product of normal edge-transitive cayley graphs

نویسندگان

a assari

چکیده

for two normal edge-transitive cayley graphs on groups h and k which have no common direct factor and gcd(jh=h ′j; jz(k)j) = 1 = gcd(jk=k ′j; jz(h)j), we consider four standard products of them and it is proved that only tensor product of factors can be normal edge-transitive.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Product of normal edge-transitive Cayley graphs

For two normal edge-transitive Cayley graphs on groups H and K which have no common direct factor and $gcd(|H/H^prime|,|Z(K)|)=1=gcd(|K/K^prime|,|Z(H)|)$, we consider four standard products of them and it is proved that only tensor product of factors can be normal edge-transitive.

متن کامل

Product of normal edge-transitive Cayley graphs

For two normal edge-transitive Cayley graphs on groups H and K which have no common direct factor and gcd(|H/H ′|, |Z(K)|) = 1 = gcd(|K/K′|, |Z(H)|), we consider four standard products of them and it is proved that only tensor product of factors can be normal edge-transitive. c ⃝ 2014 IAUCTB. All rights reserved.

متن کامل

On the eigenvalues of normal edge-transitive Cayley graphs

A graph $Gamma$ is said to be vertex-transitive or edge‎- ‎transitive‎ ‎if the automorphism group of $Gamma$ acts transitively on $V(Gamma)$ or $E(Gamma)$‎, ‎respectively‎. ‎Let $Gamma=Cay(G,S)$ be a Cayley graph on $G$ relative to $S$‎. ‎Then, $Gamma$ is said to be normal edge-transitive‎, ‎if $N_{Aut(Gamma)}(G)$ acts transitively on edges‎. ‎In this paper‎, ‎the eigenvalues of normal edge-tra...

متن کامل

Quotients of Normal Edge-Transitive Cayley Graphs

The symmetry properties of mathematical structures are often important for understanding these structures. Graphs sometimes have a large group of symmetries, especially when they have an algebraic construction such as the Cayley graphs. These graphs are constructed from abstract groups and are vertex-transitive and this is the reason for their symmetric appearance. Some Cayley graphs have even ...

متن کامل

on the eigenvalues of normal edge-transitive cayley graphs

a graph $gamma$ is said to be vertex-transitive or edge‎- ‎transitive‎ ‎if the automorphism group of $gamma$ acts transitively on $v(gamma)$ or $e(gamma)$‎, ‎respectively‎. ‎let $gamma=cay(g,s)$ be a cayley graph on $g$ relative to $s$‎. ‎then, $gamma$ is said to be normal edge-transitive‎, ‎if $n_{aut(gamma)}(g)$ acts transitively on edges‎. ‎in this paper‎, ‎the eigenvalues of normal edge-tra...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید


عنوان ژورنال:
journal of linear and topological algebra (jlta)

ناشر: central tehran branch. iau

ISSN 2252-0201

دوره 03

شماره 02 2014

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023